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Abstract
Biological aging measures have been proposed as proxies for extension of healthy life span in trials of geroprotective therapies that aim to 
slow aging. Several methods to measure biological aging show promise but it is not known if these methods are sensitive to changes caused by 
geroprotective therapy. We conducted analysis of two proposed methods to quantify biological aging using data from a recently concluded trial 
of an established geroprotector, caloric restriction. We obtained data from the National Institute on Aging CALERIE randomized trial through 
its public-access biobank (https://calerie.duke.edu/). The CALERIE trial randomized N = 220 nonobese adults to 25% caloric restriction 
(n = 145; 11.7% caloric restriction was achieved, on average) or to maintain current diet (n = 75) for 2 years. We analyzed biomarker data 
collected at baseline, 12-, and 24-month follow-up assessments. We applied published biomarker algorithms to these data to calculate two 
biological age measures, Klemera–Doubal Method Biological Age and homeostatic dysregulation. Intent-to-treat analysis using mixed-effects 
growth models of within-person change over time tested if caloric restriction slowed increase in measures of biological aging across follow-up. 
Analyses of both measures indicated caloric restriction slowed biological aging. Weight loss did not account for the observed effects. Results 
suggest future directions for testing of geroprotective therapies in humans.

Keywords: Caloric restriction—Biological age—Geroscience—Geroprotector

Population aging threatens a rising tide of disease and disability 
(1). The new field of geroscience aims to respond to this challenge 
by devising therapies to extend healthy life years (2,3). Several such 
“geroprotective” therapies are poised for proof-of-concept testing 
in humans (4). But there is not yet consensus about how proof-of-
concept tests should be conducted (5). Extension of healthy life span 
is a challenging outcome metric for human trials because of cost and 
other impracticalities of extended follow-up. Proposed measures of 
so-called “biological aging” may provide a surrogate—a measure that 
can be tracked over relatively short duration of follow-up and whose 
response to geroprotective therapy can serve as a proxy for extension 
of healthy life span.

Biological aging refers to the gradual and progressive decline in the 
integrity of the body’s systems occurring with advancing chronologi-
cal age (6,7). Rather than any specific disease process, this decline in 
system integrity is thought to reflect biological changes having their 
origins in aging itself (3,8). Whereas chronological age increases at the 
same rate for everyone, biological age can increase faster for some and 
slower for others. To the extent that geroprotective therapies modify 
basic biological processes of aging, their effects should be reflected in 
a slowed rate of decline in system integrity—slowed biological aging.

Recently, several methods have been proposed to quantify biologi-
cal aging using algorithms that combine information from multiple bio-
markers (9–13). These algorithms integrate information from multiple 
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organ systems in the body to produce a single composite measure of 
system integrity. The underlying hypothesis is that, among individu-
als of the same chronological age, a difference in measured biological 
aging reflects differences in risk for age-related disease, disability, and 
death. In observational studies of biological aging measures, people 
with “slower” biological aging have lower risk for morbidity, disability, 
and mortality (14–18). However, it is not known if measured biological 
aging can be modified by geroprotective therapy.

Caloric restriction is among the oldest and most effective gero-
protective interventions in worms, flies, and mice (19). Growing 
evidence suggests caloric restriction also benefits life span and 
healthspan in primates and humans (20–22). A  unique resource 
to study effects of caloric restriction in humans is the National 
Institute on Aging 2-year randomized controlled trial of caloric 
restriction in young, non-obese healthy humans, Comprehensive 
Assessment of the Long-term Effects of Reducing Intake of Energy 
(CALERIE) (23). CALERIE data are now publicly available (https://
calerie.duke.edu/). These data provide a resource to characterize 
potential geroprotective effects of caloric restriction (24). They also 
provide the opportunity to develop and refine methods that can be 
generalized to tests of other geroprotective interventions.

We analyzed CALERIE Biobank data to test whether recently 
proposed methods to quantify biological aging would prove sensi-
tive to geroprotective effects of caloric restriction over the relatively 
short, 2-year span of the human trial. The hypothesis was that cal-
oric restriction would slow the rate of change in measured biological 
age. We conducted intent-to-treat analysis using two different meas-
ures of biological aging implementable with data already existing 
within the CALERIE Biobank: the Klemera–Doubal method (KDM) 
Biological Age (25,26) and homeostatic dysregulation (11,15). 
Algorithms were applied to measures of serum albumin, alkaline 
phosphatase, C-reactive protein, total cholesterol, creatinine, gly-
cated hemoglobin (estimated from serum glucose), systolic blood 
pressure, urea nitrogen, uric acid, and white blood cell count. KDM 
Biological age and homeostatic dysregulation algorithms have not 
been studied before in the CALERIE trial, although some data used 
to compute the algorithms were reported previously (23). The ana-
lysis we report below evaluates effects of the CALERIE intervention 
on composite measures of aging-related changes in organ-system 
function and provides a proof-of-concept test for using biological 
aging algorithms as outcome measures in geroprotector trials.

Method

CALERIE
The CALERIE trial is described in detail elsewhere (23,27,28). 
Briefly, N = 220 normal-weight (22.0  ≤ BMI < 28 kg/m2) partici-
pants (70% female, 77% White) aged 21–50 years at baseline were 
randomized to caloric restriction or ad libitum conditions with a 
2:1 ratio (n = 145 to caloric restriction, n = 75 to ad libitum). “Ad 
libitum” (normal) caloric intake was determined from two con-
secutive 14-day assessments of total daily energy expenditure using 
doubly labeled water (29). Average percent caloric restriction over 
6-month intervals was retrospectively calculated by the intake-bal-
ance method with simultaneous measurements of total daily energy 
expenditure using doubly labeled water and changes in body com-
position (30,31). Over the course of the trial, participants in the 
caloric-restriction arm averaged 12% reduction in caloric intake 
(about half the prescribed reduction). Participants in the ad libitum 
condition reduced caloric intake by <2% (23). Additional details 
about CALERIE are reported in the Supplementary Materials.

Biobank Data
We obtained publicly available biomarker data from the CALERIE 
Biobank website (https://calerie.duke.edu/apply-samples-and-data-
analysis). Of the N  =  220 CALERIE participants with baseline 
biomarker data to quantify biological aging, 200 and 191 also 
provided necessary data at the 12- and 24-month follow-up time 
points, respectively; 92% of ad libitum-arm participants and 83% 
of caloric-restriction-arm participants provided necessary data at all 
three time points.

Measures of Biological Age
Calculating human biological age is a relatively recent enterprise 
(32) and there is disagreement about methods (33). Our goal was 
to borrow and implement validated methods using available data. 
A  recent comparison of five different biological age algorithms as 
predictors of mortality across 20 years of follow-up identified the 
Klemera–Doubal method (25) as performing the best: consistent 
with results from other studies (25,34), it predicted mortality; did 
so better than chronological age; and accounted for the association 
between chronological age and mortality (14). Although this method 
is imperfect (26), it can be implemented in young, healthy adults, 
and is associated with functional outcomes in this younger popula-
tion (12,35). The Klemera–Doubal method has been criticized for 
including chronological age information (36). Therefore, to evaluate 
the robustness of findings, we also measured biological age using the 
homeostatic dysregulation method (11,15), which does not include 
information about chronological age.

Klemera–Doubal Method Biological Age Algorithm
Following the approach described by Levine (10), we calculated 
CALERIE participants’ biological ages using the Klemera–Doubal 
equation (25). The equation takes information from m number of 
regression lines of chronological age regressed on m biomarkers:
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where x is the value of biomarker j measured for an individual in 
the CALERIE trial. To ensure independence of the Klemera–Doubal 
Biological Age algorithm from the CALERIE database, we esti-
mated all algorithm parameters from a reference data set. We used 
the 2007–2008 and 2009–2010 panels of the U.S. National Health 
and Nutrition Examination Survey to match the assessment period 
of the CALERIE trial. For each biomarker j, the parameters k, q, 
and s were estimated from a regression of chronological age on the 
biomarker in the reference data set. k, q, and s, are the regression 
intercept, slope, and root mean squared error, respectively. sBA is a 
scaling factor equal to the square root of the variance in chrono-
logical age explained by the biomarker panel in the reference data-
base. CA is chronological age. The biomarkers from the CALERIE 
database were: serum albumin, alkaline phosphatase, C-reactive 
protein, total cholesterol, creatinine, glycated hemoglobin (esti-
mated from serum glucose), systolic blood pressure, urea nitrogen, 
uric acid, and white blood cell count. This biomarker set departed 
in two cases from previous analysis (10,12,14,37). The CALERIE 
protocol did not measure lung function or cytomegalovirus anti-
body. Instead, we included white blood cell count and uric acid 
plasma concentration, which are related to immune and kidney 
function, show prospective relationships with mortality (38,39), 
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and were measured in both CALERIE and the NHANES. We report 
sensitivity analyses in the supplement in which algorithms are com-
puted excluding these additional markers. Following Levine (10), 
regressions of chronological age on biomarker values included all 
NHANES participants aged 30–75 years, not pregnant, and with 
complete biomarker data (n  =  7,694). Biomarkers with skewed 
distributions were log-transformed for analysis. Models were esti-
mated separately for men and women. For each biomarker, model 
R-squared, root-mean-squared-error, intercept, and age-coefficient 
were saved (Supplementary Table  1, Panel A). These parameters 
were used to form the Klemera–Doubal Biological Age algorithm 
in our study.

Homeostatic dysregulation algorithm
We calculated CALERIE participants’ homeostatic dysregulation 
using the approach described by Cohen and colleagues (15,40). 
Homeostatic dysregulation quantifies deviation of a person’s physi-
ology from a reference norm based on biomarker Mahalanobis 
distance (41). We computed parameters for the homeostatic dys-
regulation algorithm based on the same ten biomarkers used to 
calculate the Klemera–Doubal Biological Age algorithm. We 
formed the reference norm from young, healthy NHANES par-
ticipants: NHANES 2007–2008 and 2009–2010 participants aged 
20–30  years who were not obese and whose biomarker values 
fell within the age- and sex-specific normal range (42) (N = 689). 
We standardized all biomarkers to have mean = 0, SD = 1 within 
sex and computed the biomarker variance-covariance matrix 
(Supplementary Table 1, Panel B). This matrix, together with the 
Mahalanobis distance equation (41) formed the homeostatic dys-
regulation algorithm.

Biological aging measures in NHANES
We conducted analysis of the two biological age algorithms in 
independent NHANES data not used for algorithm development 
(Supplementary Information). Both algorithms were (a) correlated 
with chronological age (r = 0.92 for KDM Biological Age, r = 0.41 
for homeostatic dysregulation); (b) associated with physical limita-
tions independent of chronological age (r = 0.34 for KDM Biological 
Age, r = 0.16 for homeostatic dysregulation); and (c) indicated accel-
erated aging in a socially disadvantaged population (low educational 
attainment predicted a b = 1.56 95% CI [95% CI 1.09, 2.03] “year” 
acceleration of KDM Biological Age and b = 0.31 [95% CI 0.25, 
0.37] standard deviation increase in homeostatic dysregulation inde-
pendent of chronological age). Details of analyses are reported in the 
Supplementary Information.

Calculation of biological aging measures in CALERIE
We applied KDM Biological Age and homeostatic dysregulation algo-
rithms to CALERIE participants’ biomarker data. Biomarker data 
came from blood collected at baseline, 12-month, and 24-month fol-
low-up visits (baseline n = 220, 12-month n = 200, 24-month n = 191). 
Details on CALERIE Biobank data are reported in Supplementary 
Table 2. Glycated hemoglobin (%) was estimated from serum glucose 
using the equation HbA1C = (glucose+46.7)/28.7 (43). Alkaline phos-
phatase, blood urea nitrogen, creatinine, high sensitivity C-reactive 
protein, HbA1C, and uric acid were log transformed for analysis. 
KDM Biological age was computed directly from the biomarker val-
ues. To compute homeostatic dysregulation, biomarker values were 
standardized to have mean and standard deviation equal to one based 
on sex-specific distributions in the NHANES reference sample.

Missing data
Of a total 6,110 possible biomarker observations (10 biomarkers 
× 611 observations), 6,084 (>99%) were available in the CALERIE 
Biobank database. For individuals who participated in baseline, 
12- and 24-month assessments, missing biomarker values from a 
single assessment were imputed as linear combinations of observed 
values from the other two assessments. In the case of six observa-
tions, missing biomarker values could not be imputed. KDM bio-
logical age values for these observations were pro-rated to account 
for missing data. Homeostatic dysregulation values could not be 
calculated, and values for these six observations were coded as 
missing.

Analysis
We conducted intent-to-treat analysis to test the hypothesis that cal-
oric restriction would slow the rate of biological aging. We tested if 
randomization to the caloric-restriction arm of the CALERIE trial 
was associated with slowed biological aging using a mixed-effects 
growth model (44). The model included main effect terms for fol-
low-up time and treatment arm, an interaction term testing differ-
ential effect of follow-up time by treatment arm, and covariates for 
chronological age at baseline and sex. The model took the form
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where ∆Bio Ageit is change in the biological age measure from base-
line for individual “I” at time “t,” γ1 estimates annual change in bio-
logical age for ad libitum-arm participants, γ2 estimates any baseline 
difference in biological age between participants in ad libitum and 
caloric-restriction arms of the trial, γ3 estimates the difference in 
annual change in biological age between ad libitum-arm and cal-
oric restriction-arm participants, χ is a vector of covariates, and μ0i 
and μ1i are the “random” intercepts and slopes estimated for each 
individual “i.” The coefficient γ3 tests the hypothesis that biological 
aging was slowed for participants randomized to the caloric-restric-
tion arm of the trial. All models included sex and baseline age as 
covariates. Growth-model analysis included 611 observations of 
220 individuals.

We also evaluated whether participants who achieved a higher 
“dose” of caloric restriction exhibited a stronger “response” in 
terms of more pronounced slowing in their rate of biological aging. 
CALERIE participants were not blind to their intervention condi-
tion and were active participants in their own “dosing;” i.e., partic-
ipants’ behavior influenced their degree of caloric restriction. For 
this reason, even though treatment condition (caloric-restriction vs. 
ad libitum) was randomly assigned, the dose of caloric restriction 
achieved by participants in the treatment arm could vary system-
atically with their rate of biological aging prior to the start of the 
trial. We compared biological aging in CALERIE participants in 
the ad libitum condition to two subgroups of caloric-restriction-
arm participants: those who achieved less than 10% caloric restric-
tion on average across the 12- and 24-month follow-up periods 
and those who achieved 10% or more caloric restriction during 
these periods. Subjects were not randomized to <10/≥10% adher-
ence and thus may differ across a range of values possibly related 
to both level of CR attained and biological aging. The analysis of 
dose–response effects shown are therefore purely exploratory in 
nature and intended to provide hypothesis generation rather than 
confirmatory evidence.
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Results

Baseline
CALERIE participants’ chronological and Klemera–Doubal method 
(KDM) Biological Ages were correlated (r = 0.88, Figure 1). At base-
line, there was no difference in KDM Biological Age between caloric 
restriction and ad libitum arms of the CALERIE trial (p value for 
difference = .777). Participants’ biological ages were slightly younger 
than their chronological ages. Mean chronological age at baseline 
among CALERIE participants was 38 years (SD = 7). Mean KDM 
Biological Age was 37 years (SD = 7). This difference may reflect: 
the sampling frames used for CALERIE and the NHANES; vol-
unteer bias; and that CALERIE participants were selected to be in 
good health, whereas the NHANES sample used to estimate KDM 
Biological Age parameters represented the general population.

Longitudinal Change
Across follow-up, CALERIE participants randomized to the trial’s 
caloric restriction arm experienced slower biological aging as com-
pared to participants randomized to the ad libitum arm (treatment-
by-time interaction: b =  −0.60 (95% CI −0.99, −0.21), p =  .003). 
Average change from baseline in KDM Biological Age is plotted 
for ad libitum- and caloric-restriction-arm participants in Figure 2. 
CALERIE participants randomized to the ad libitum arm of the trial 
experienced average increase in KDM Biological Age of 0.71 “years” 
per 12-month follow-up (95% CI 0.41, 1.01). For participants ran-
domized to caloric restriction, KDM Biological Age increased more 
slowly, by an average of 0.11 (95% CI −0.13, 0.36) “years” per 
12-month follow-up interval. This change was not statistically dif-
ferent from zero (p  =  .353), indicating slowed biological aging in 
caloric-restriction-arm participants. Growth model coefficients are 
reported in Table 1 and Supplementary Table 3.

Association With Weight Loss
The slowed pace of biological aging among CALERIE participants 
randomized to the caloric-restriction arm was not accounted for by 
weight loss during the intervention. CALERIE participants in the 

caloric-restriction arm of the trial experienced significant weight loss 
relative to those in the ad libitum arm (23). We tested if the slower 
pace of biological aging observed among participants in the caloric-
restriction arm could be attributed to this weight loss. We repeated 
growth-model analysis, including weight as a time-varying covari-
ate. Independent of weight loss, caloric-restriction arm participants 
experienced slower biological aging as compared to ad libitum-arm 
participants (weight-loss adjusted treatment-by-time interaction 
b = −0.55 (95% CI −0.95, −0.16), p = .006).

Dose Response
Slowed pace of biological aging among CALERIE participants ran-
domized to the caloric-restriction arm was greater (i.e., slowed by 
a larger degree) for participants who achieved more caloric restric-
tion. The degree of caloric restriction varied across participants 
(Supplementary Figure 2). We divided the n = 130 caloric restriction-
arm participants who attended follow-up assessments into those 
who failed to achieve an average 10% caloric restriction across 
follow-ups (n  =  66) and those who achieved 10% or greater cal-
oric restriction (n = 62). Visit-specific caloric restriction information 
was unavailable for n = 2 participants. We then repeated our ana-
lysis. Both groups of caloric restriction arm participants experienced 
slowed biological aging relative to ad libitum-arm participants (for 
the <10% group, b = −0.49 [95% CI −0.95, −0.04]; for the ≥10% 
group, b = −0.72 [95% CI −1.19, −0.25]; Supplementary Figure 3). 
However, although the pattern of effect-sizes was consistent with 
a dose–response relationship, the difference in effect between the 
<10% and ≥10% groups was not statistically significant (p = .361). 
Growth model coefficients are reported in Supplementary Table 5.

Replication With Homeostatic Dysregulation
We repeated analysis, this time using homeostatic dysregulation to 
index biological aging. Replication of analysis using homeostatic 
dysregulation in place of KDM Biological Age yielded similar results. 
At baseline, homeostatic dysregulation had mean (SD) of 3.44 (0.42), 
was positively correlated with CALERIE participants’ chronological 
ages (r = 0.12), and was not different between treatment and ad lib-
itum arms of the trial (p = .815). Across follow-up, caloric-restriction 
arm participants experienced slower biological aging compared to 
ad libitum-arm participants as measured by homeostatic dysregula-
tion (treatment-by-time interaction b = -0.07 [95% CI −0.12, −0.01], 
p = .014). Homeostatic dysregulation was unchanged across follow-
up among ad libitum-arm CALERIE participants (b = 0.01 units per 
12-month follow-up [95% CI −0.03, 0.06], p =  .644). In contrast, 
homeostatic dysregulation declined by −0.05 (95% CI −0.08, −0.02) 
units among caloric restriction-arm participants (p < .001). Slower 
biological aging in caloric restriction-arm participants compared to 
ad libitum-arm participants as measured by homeostatic dysregu-
lation was not accounted for by weight-loss (weight loss adjusted 
treatment-by-follow-up-time interaction b = −0.07 (95% CI −0.12, 
−0.01), p = .020). Within the caloric restriction arm, there were no 
dose effects observed (p = .470). Homeostatic dysregulation growth 
model coefficients are reported in Supplementary Tables 4 and 5.

Discussion
We conducted intent-to-treat analysis of the CALERIE randomized 
trial to test if caloric restriction slowed biological aging over the 
course of a 2-year intervention. Tests using two different methods to 
quantify biological aging (Klemera–Doubal method Biological Age 

Figure 1. CALERIE participants’ KDM Biological Ages were highly correlated 
with their chronological ages at the time of baseline assessment but tended 
to be slightly younger. The plotted line shows a one-to-one correspondence 
between biological age and chronological age. The larger number of plotted 
points below the line as compared to above the line indicates that CALERIE 
participants’ KDM Biological Ages tended to be slightly younger than their 
chronological ages.
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and homeostatic dysregulation) produced a consistent result: partici-
pants in the caloric-restriction arm of the trial experienced slowed 
biological aging as compared to participants in the ad libitum arm. 
Sensitivity analysis showed that slowed biological aging in the cal-
oric restriction arm of the trial was not accounted for by weight loss 
during the intervention phase.

The main contribution of this study is to provide initial evidence 
that methods to quantify biological aging are sensitive enough to 

detect effects of geroprotective therapy delivered to middle-aged 
adults in a small randomized trial. This evidence adds to findings 
from observational studies that accelerated biological aging meas-
ured using the same methods predicts functional decline, morbidity, 
and mortality in older adults (10,11,14,15,37,40). Together, this evi-
dence argues for using methods to quantify biological aging as out-
comes in trials of geroprotective therapies. For example, it is thought 
that pharmacotherapy may be able to replicate the geroprotective 
effects of caloric restriction (45). Methods for assessing biological 
aging used in this study provide benchmarks against which such 
pharmacotherapy might be evaluated.

Second, we illustrate here how methods originally designed 
for cross-sectional analysis of biological age can be implemented 
within a longitudinal design. To our knowledge, this is the first lon-
gitudinal analysis of KDM Biological Age and homeostatic dysreg-
ulation. The aging process involves changes occurring across time 
within individuals. To date, with some exceptions (46–50), most 
analysis of biological aging in humans continues to focus on cross-
sectional differences between younger and older persons. Several 
large databases allow for repeated measures analysis of indices of 
biological aging. An important next step in translating these indices 
for use in geroprotector trials is to develop better understanding of 
rates of change over time in the general population and relevant 
subgroups.

Finally, this study provides evidence that biological aging meas-
ures developed in mixed-age samples and tested for predicting out-
comes primarily in older adults are sensitive to changes produced by 
geroprotective intervention in the physiologies of relatively young 
individuals. Trajectories of aging begin to diverge as early as young 
adulthood (12), suggesting geroprotective therapies may be most 
effective when administered early, before age-related disease onsets 
(51). Younger persons may also be better able to sustain toxicity 
associated with some geroprotectors (52). Tried and tested metrics of 
biological aging like physical frailty (53) and accumulation of defi-
cits (54) are mostly invariant in young and midlife adults. Indices of 
biological aging may provide an alternative for geroprotector trials 
testing therapies in younger populations.

Limitations
Quantification of biological aging remains a work in progress. We 
applied two previously developed methods to quantify biological 
aging and obtained similar results. But there are many other proposed 
methods to quantify biological aging. For example, several proposed 
methods utilize genomic and other molecular data not yet available 
in the CALERIE Biobank (9,55–60). As new types of data are added 
to the CALERIE database, analysis of other biological aging meas-
ures will become possible. The methods we used were imperfect. For 
example, the Klemera–Doubal method is based on linear models 

Figure 2. Change in KDM Biological Age from Baseline to 12- and 24-month 
follow-ups in the ad libitum (black dots) and caloric-restriction (blue dots) 
arms of the CALERIE trial. Panel A shows mean values with 95% confidence 
intervals calculated for each follow-up. Panel B shows slopes estimated from 
the growth model with the shaded areas indicating 95% confidence intervals.

Table 1. Estimated Annual Change in Klemera–Doubal (KDM) Biological Age From Baseline Through 24-Month Follow-up in Ad libitum-  
and Caloric Restriction-arm Participants in the CALERIE Randomized Trial

b [95% CI] p Value N

Estimated Annual Change in KDM Biological Age from Baseline through 24-month follow-up
 Ad Libitum-Arm Participants 0.71 [0.41, 1.01] 2.97E−06 75
 Caloric Restriction-Arm Participants 0.11 [−0.13, 0.36] .353 145
Test of Interaction −0.60 [−0.99, −0.21] .003 220

Note: The regression model included sex and age at baseline as covariates. KDM Biological Age increased in ad libitum-arm participants. Change in KDM Bio-
logical Age was not different from zero in caloric-restriction-arm participants. The difference between treatment arms in rate of change in KDM Biological Age was 
statistically significant (test of interaction p value = .003), indicating slowed biological aging in caloric-restriction-arm participants as compared to ad libitum-arm 
participants. CI = Confidence interval.
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relating biomarker levels to chronological age. But many biomarkers 
show nonlinear trajectories in aging, and biomarker relationships 
with mortality risk may also change with advancing age (61). As 
methods are refined, analyses can be repeated. CALERIE participants 
were almost exclusively white (95%). CALERIE participants were 
not blinded to intervention condition. Slowed biological aging in 
the caloric restriction-arm participants may partly reflect a placebo 
effect. Replication in other populations is needed. Both the Klemera–
Doubal Biological Age and homeostatic dysregulation methods have 
similar validity in white and non-White populations (15,37). But it 
is unknown if caloric restriction may have ethnicity-specific gero-
protective effects. Follow-up was right censored. The CALERIE trial 
was comparatively short (2 years). Whether changes to the rate of 
biological aging can be sustained over longer intervals is unknown. 
Also unknown is whether slowed biological aging observed in this 
study is sustained beyond the term of the intervention.

Supplementary Material
Supplementary data is available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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Supplemental	Materials	to	Change	in	the	rate	of	biological	aging	in	response	to	caloric	
restriction:	CALERIE	Biobank	Analysis	
	
DW	Belsky	et	al.		

	

Supplementary	materials	are	divided	into	two	sections.		

	

Section	I	reports	further	details	on	the	CALERIE	randomized	trial.		

	

Section	II	reports	additional	analyses	supporting	those	reported	in	the	main	text	of	this	article.		 	



I.	The	CALERIE	Study		

Details	on	the	CALERIE	Trial	have	been	published	previously	(1–3).	Here	we	reproduce	selected	

pieces	of	information	published	in	those	articles	and	also	on	the	CALERIE	Biobank	website	

(https://calerie.duke.edu/).		

The	following	text	is	quoted	from	the	CALERIE	Biobank	website	

(https://calerie.duke.edu/about-study)	

Chronic	caloric	restriction	extends	average	life	span	in	animals	and	delays	age-related	diseases.	The	
CALERIE	(Comprehensive	Assessment	of	Long-term	Effects	of	Reducing	Intake	of	Energy)	Study	was	
designed	to	test	the	hypothesis	that	two	years	of	caloric	restriction	(CR)	in	humans	would	yield	the	
same	results.	

CALERIE	Phase	2	was	a	two-year	intervention	of	a	25%	calorie	restriction	(CR)	in	young	and	middle-
aged	non-obese	men	and	women	to	test	important	study	outcomes:	feasibility,	safety,	effects	on	
quality	of	life,	effects	on	disease	risk	factors,	and	effects	on	biological	predictors	of	life	span.	

Potential	participants	were	screened	during	a	series	of	physical	and	psychological	tests	and	interviews	
to	identify	healthy	individuals	who	agreed	to	make	the	necessary	commitments	to	participate	in	a	
two-year	intensive	CR-oriented	lifestyle	modification	program.	Two-hundred	eighteen	healthy	
volunteers	across	three	sites	(Tufts	University,	Pennington	Biomedical	Research	Center,	and	
Washington	University	School	of	Medicine)	were	recruited	beginning	in	May	2007.	The	study	
Coordinating	Center	was	at	the	Duke	Clinical	Research	Institute.		CALERIE	participant’s	requirements	
were:	

• Be	relatively	healthy	
• Be	ages	20-50	(inclusive)	for	men	and	ages	20-47	(inclusive)	for	women	
• Have	a	body	mass	index	(BMI)	of	22-27.9	(lean	to	slightly	overweight)	
• Be	free	of	diabetes,	cancer,	heart	and	liver	disease,	and	AIDS	
• No	recent	and	substantial	weight	loss	
• If	women,	using	an	acceptable	form	of	contraception	(barrier	method,	oral	contraceptive,	

intrauterine	device,	or	similar	form),	and	to	continue	use	while	enrolled	in	the	study.	

The	overall	aim	of	CALERIE	Phase	2	was	to	test	the	hypothesis	that	two	years	of	sustained	CR	would	
result	in	the	same	adaptive	changes	occurring	in	rodents	subjected	to	CR.		Particular	emphasis	was	on	
the	adaptive	responses	thought	to	be	involved	in	slowing	the	aging	process	and	protecting	against	
age-related	disease	processes.		An	important	secondary	aim	was	to	identify	potential	adverse	effects	
of	CR	in	humans.			

Study	results	were	published	in	2015:	A	2-Year	Randomized	Controlled	Trial	of	Human	Caloric	
Restriction:	Feasibility	and	Effects	on	Predictors	of	Health	Span	and		Longevity.	

Prior	to	the	CALERIE	study,	the	duration	of	the	intervention	and	the	randomized	nature	of	the	
treatment	assignment	had	never	been	attempted	in	a	human	study.	These	factors,	combined	with	the	
extensive	biorepository	of	samples	from	study	participants	and	careful	attention	to	detail	in	the	
collection	and	assessment	of	data,	make	the	CALERIE	biorepository	an	invaluable	resource	for	
investigators.		We	have	a	rich	biological	and	clinical	data	repository	for	the	investigation	of	
innumerable	hypotheses	about	the	role	of	calorie	restriction	on	the	human	aging	biology.		We	aim	to	
provide	CALERIE	Network	Investigators	with	all	the	tools	they	need	to	further	study	the	biological	
mechanisms	related	to	aging	and	longevity.	
	



A	 CONSORT	 diagram	 illustrating	 enrollment	 and	 retention	 in	 CALERIE	 was	 published	 in	 The	

Journal	of	Gerontology	A:	Biological	Sciences	in	2015	(3).	That	article	is	freely	available	through	

PubMed	 Central	 (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841173/).	 The	 CONSORT	

diagram	can	be	viewed	at	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841173/figure/F1/.		

	
	 	



II.	Supplementary	Analysis	

	

Re-analysis	of	CALERIE	data	using	eight-biomarker	biological	age	algorithms	

We	repeated	our	analysis	of	the	CALERIE	database	using	Klemera-Doubal	method	(KDM)	

Biological	Age	and	homeostatic	dysregulation	measures	based	on	the	subset	of	eight	

biomarkers	used	in	previous	studies	and	also	available	in	CALERIE.	The	eight	biomarkers	were	

serum	albumin,	alkaline	phosphatase,	C-reactive	protein,	total	cholesterol,	creatinine,	glycated	

hemoglobin	(estimated	from	serum	glucose),	and	systolic	blood	pressure.	Results	from	the	

eight-biomarker	versions	of	the	biological	age	algorithms	were	essentially	the	same	as	results	

from	the	ten-biomarker	versions	of	the	algorithms.	Results	are	reported	in	Supplemental	Table	

6.		

	

Tests	of	biological	age	algorithms	defined	from	2007-8	NHANES	in	data	from	2009-10	NHANES	

To	evaluate	the	performance	of	the	biological	age	algorithms	in	an	independent	dataset,	we	re-

computed	all	parameters	using	only	data	from	the	2007-8	NHANES.	We	then	implemented	the	

resulting	algorithms	in	the	2009-10	NHANES	data.	We	examined	data	from	all	2009-10	NHANES	

participants	aged	30-75	years	with	complete	biomarker	data	(N=3,969).			

	 Association	with	chronological	age.	KDM	Biological	Age	and	homeostatic	dysregulation	

increased	with	chronological	age	among	NHANES	participants	(r=0.92	for	KDM	Biological	Age;	

r=0.41	for	homeostatic	dysregulation,	Supplemental	Figure	3).			

	 Association	with	physical	limitations.	Next,	we	tested	if	biological	aging	measures	

predicted	increased	physical	limitation	as	measured	by	the	16-item	NHANES	ADL	scale	(4).	We	

counted	the	number	of	items	on	which	the	respondent	indicated	“much	difficulty”	or	“unable	

to	do.”	Resulting	scores	ranged	from	0-14,	M=1,	SD=2	in	the	sample	aged	30-75	years.		

Chronologically	older	NHANES	participants	reported	more	ADLs	(r=0.21,	p<0.001).	After	

accounting	for	chronological	age	differences,	accelerated	biological	aging	was	associated	with	

having	more	ADLs	(for	KDM	Biological	Age,	r=0.34,	p<0.001;	for	homeostatic	dysregulation	

r=0.20,	p<0.001).		



	 Association	with	history	of	low	educational	attainment.	Finally,	we	tested	if	biological	

aging	measures	were	accelerated	by	an	established	risk	factor	for	early	disability	and	death,	low	

educational	attainment.	Compared	to	individuals	of	the	same	age	and	sex	who	held	a	

bachelor’s	or	higher	degree,	KDM	Biological	Ages	were	increased	by	1.17	[0.77,	1.56]	“years”	

for	those	with	only	a	high	school	diploma	or	GED	and	by	1.44	95	%	CI	[0.99,	1.89]	“years”	for	

those	with	no	high	school	equivalency.	Homeostatic	dysregulation	was	increased	in	parallel	(by	

0.27	[0.21,	0.33]	standard	deviations	for	the	high	school	diploma	group,	by	0.42	[0.36,	0.49]	

standard	deviations	for	those	with	no	high	school	equivalency).		

Comparison	with	biological	age	algorithms	including	measured	lung	function.	As	a	

sensitivity	analysis,	we	evaluated	the	potential	impact	of	differences	in	biomarker	sets	between	

the	version	of	KDM	Biological	Age	analyzed	in	CALERIE	and	the	version	analyzed	in	previous	

studies	(5,6).	We	compared	the	10-biomarker	KDM	Biological	Age	analyzed	in	CALERIE	to	a	9-

biomarker	version	more	closely	matching	KDM	Biological	Ages	used	in	previous	studies.	The	9-

biomarker	version	excluded	uric	acid	and	white	blood	cell	count,	and	include	forced	expiratory	

volume	in	1	second	(FEV1).	Cytomegalovirus	optical	density,	the	tenth	biomarker	used	in	

previous	analyses	of	KDM	Biological	Age,	was	not	available	in	the	NHANES	2009-10	dataset.	

Correlations	between	the	two	versions	of	the	KDM	Biological	Age	were	high	(r=0.98	after	

controlling	for	chronological	age).		

	

	



Supplementary	Table	1.	Parameters	used	to	calculate	biological	age	measures	in	the	CALERIE	
Dataset.	Panel	A	shows	parameters	used	to	calculate	the	Klemera-Doubal	Method	Biological	

Age.	Panel	B	shows	parameters	used	to	calculate	homeostatic	dysregulation.		

Panel	A.		

	
Panel	B.		

	
	
	 	

140.6119
Klemera-Doubal Method Biological Age Algorithm Parameters 

Sex RMSE 
Age 

Coefficient Intercept
Model R-
squared

s k q r r1 r2 n2 rchar sr sBA2 
Biomarker Parameters
Albumin F 0.309 0.000 4.199 0.000 1.66E-05 1.18E-03 1.38E-06

M 0.287 -0.006 4.659 0.065 5.74E-03 2.25E-02 5.05E-04
Alkaline Phosphatase* F 0.303 0.006 3.863 0.060 5.14E-03 2.10E-02 4.42E-04

M 0.278 0.001 4.154 0.001 7.01E-05 2.44E-03 5.96E-06
Blood Urea Nitrogen* F 0.306 0.011 1.997 0.154 1.39E-02 3.56E-02 1.26E-03

M 0.293 0.006 2.331 0.064 5.60E-03 2.22E-02 4.92E-04
Creatinine* F 0.098 0.002 0.464 0.060 5.13E-03 2.10E-02 4.41E-04

M 0.105 0.001 0.607 0.025 2.17E-03 1.37E-02 1.87E-04
C-reactive Protein* F 0.314 0.001 0.239 0.002 1.74E-04 3.82E-03 1.46E-05

M 0.283 0.002 0.140 0.006 5.18E-04 6.64E-03 4.41E-05
Glycated Hemoglobin* F 0.102 0.003 1.751 0.092 8.05E-03 2.66E-02 7.05E-04

M 0.116 0.003 1.770 0.062 5.41E-03 2.18E-02 4.74E-04
Systolic Blood Pressure F 15.774 0.620 88.660 0.182 1.68E-02 3.93E-02 1.54E-03

M 15.080 0.307 108.511 0.054 4.75E-03 2.04E-02 4.15E-04
Total Cholesterol F 39.525 0.608 172.903 0.033 2.79E-03 1.54E-02 2.37E-04

M 41.164 -0.391 218.716 0.012 1.05E-03 9.49E-03 9.01E-05
Uric Acid* F 0.202 0.004 1.521 0.065 5.63E-03 2.20E-02 4.86E-04

M 0.178 0.000 1.941 0.000 1.24E-05 1.03E-03 1.05E-06
White Blood Cell Count F 2.087 -0.021 8.191 0.014 1.19E-03 1.00E-02 1.00E-04

M 2.016 -0.008 7.551 0.002 1.78E-04 3.89E-03 1.51E-05
Summary Parameters

F 0.053 0.174 0.306 181.508 83.398
M 0.025 0.123 0.207 417.099 140.612

* Analysis value is the natural log of the obsered biomarker value

Variance - Covariance Matrix used to Calculate Homeostatic Dysregulation

Values reflect NHANES 2007-8 

& 2009-10 participants aged 20-

30 years with complete 

biomarker data and body-mass 

index <30.** 
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Albumin 0.97 -0.06 0.04 -0.30 0.00 -0.04 -0.01 0.04 0.04 0.01

Alkaline Phosphatase* -0.06 1.01 -0.03 0.18 -0.10 0.16 -0.02 -0.04 0.08 0.17

Blood Urea Nitrogen* 0.04 -0.03 1.00 -0.01 0.14 0.01 0.04 0.12 0.00 -0.04

C-reactive Protein* -0.30 0.18 -0.01 0.99 -0.06 0.01 0.01 0.02 0.13 0.24

Creatinine* 0.00 -0.10 0.14 -0.06 0.98 0.04 0.04 -0.06 0.26 -0.07

Glycated Hemoglobin* -0.04 0.16 0.01 0.01 0.04 1.01 -0.02 0.03 -0.10 0.08

Systolic Blood Pressure -0.01 -0.02 0.04 0.01 0.04 -0.02 0.98 0.01 0.06 0.06

Total Cholesterol 0.04 -0.04 0.12 0.02 -0.06 0.03 0.01 1.01 -0.01 -0.07

Uric Acid* 0.04 0.08 0.00 0.13 0.26 -0.10 0.06 -0.01 1.05 0.13

White Blood Cell Count 0.01 0.17 -0.04 0.24 -0.07 0.08 0.06 -0.07 0.13 1.01

* Analysis value is the natural log of the obsered biomarker value

** Biomarker values were transformed to have M=0, SD=1 separately for men and women



Supplemental	Table	2.	Description	of	CALERIE	Biobank	data	used	for	analysis	
	
Panel	A.	Summary	statistics	of	biomarkers	as	reported	in	the	CALERIE	database		

	
	
Panel	B.	Summary	statistics	of	log-transformed	values	for	biomarkers	log-transformed	for	
analysis	

	

       
Control Caloric Restriction Total

M SD N M SD N M SD N
Baseline 75 145 220

Albumin g/dL 4.40 0.29 75 4.39 0.27 145 4.40 0.28 220
Alkaline Phosphatase IU/L 61.61 16.34 75 59.32 18.17 145 60.10 17.56 220
Blood Urea Nitrogen mg/dL 13.03 3.26 75 12.64 3.04 145 12.77 3.12 220
C-reactive Protein ug/mL 1.09 1.34 74 1.46 3.71 145 1.34 3.12 219
Creatinine mg/dL 0.84 0.16 75 0.87 0.15 145 0.86 0.15 220
Glycated Hemoglobin* pct 4.63 0.21 75 4.63 0.23 145 4.63 0.22 220
Systolic Blood Pressure mm/Hg 111.19 9.86 75 112.09 9.89 145 111.78 9.87 220
Total Cholesterol mg/dL 176.15 34.79 74 168.01 29.65 145 170.76 31.64 219
Uric Acid mg/dL 4.50 1.26 75 4.53 1.27 145 4.52 1.26 220
White Blood Cell Count 10^3/uL 5.88 1.29 69 5.96 1.57 139 5.93 1.48 208

12-month Follow-up 70 130 200
Albumin g/dL 4.36 0.28 70 4.41 0.31 130 4.39 0.30 200
Alkaline Phosphatase IU/L 60.71 16.47 70 55.02 16.38 129 57.03 16.59 199
Blood Urea Nitrogen mg/dL 12.97 3.69 70 13.23 3.31 130 13.14 3.45 200
C-reactive Protein ug/mL 1.73 3.57 71 1.10 2.62 129 1.32 3.00 200
Creatinine mg/dL 0.82 0.15 70 0.86 0.16 130 0.85 0.16 200
Glycated Hemoglobin* pct 4.57 0.26 70 4.52 0.23 130 4.54 0.24 200
Systolic Blood Pressure mm/Hg 113.71 11.49 70 110.23 10.67 130 111.45 11.06 200
Total Cholesterol mg/dL 174.37 32.43 71 157.76 26.00 129 163.66 29.46 200
Uric Acid mg/dL 4.52 1.08 70 4.48 1.21 130 4.49 1.16 200
White Blood Cell Count 10^3/uL 5.99 1.48 69 5.64 1.63 122 5.77 1.58 191

24-month Follow-up 71 120 191
Albumin g/dL 4.34 0.29 71 4.43 0.27 120 4.39 0.28 191
Alkaline Phosphatase IU/L 62.63 15.90 71 54.49 14.55 120 57.52 15.53 191
Blood Urea Nitrogen mg/dL 12.69 3.12 71 13.18 3.53 120 12.99 3.38 191
C-reactive Protein ug/mL 1.45 2.54 71 0.88 1.36 120 1.09 1.90 191
Creatinine mg/dL 0.76 0.14 71 0.83 0.15 120 0.81 0.15 191
Glycated Hemoglobin* pct 4.56 0.24 71 4.51 0.24 120 4.53 0.24 191
Systolic Blood Pressure mm/Hg 113.71 12.89 71 110.24 10.37 120 111.53 11.46 191
Total Cholesterol mg/dL 178.25 34.53 71 160.46 29.12 120 167.07 32.32 191
Uric Acid mg/dL 4.54 1.13 71 4.49 1.20 120 4.51 1.17 191
White Blood Cell Count 10^3/uL 5.88 1.52 70 5.40 1.50 119 5.58 1.52 189

*Estimated as (glucose mg/dL +46.7) /28.7

Control Caloric Restriction Total
M SD M SD M SD

Baseline
Alkaline Phosphatase IU/L 4.10 0.26 4.06 0.29 4.07 0.28
Blood Urea Nitrogen mg/dL 2.61 0.24 2.59 0.22 2.60 0.23
C-reactive Protein ug/mL 0.61 0.47 0.63 0.57 0.62 0.54
Creatinine mg/dL 0.60 0.09 0.62 0.08 0.62 0.08
Glycated Hemoglobin* pct 1.73 0.04 1.73 0.04 1.73 0.04
Uric Acid mg/dL 1.68 0.22 1.68 0.22 1.68 0.22

12-month Follow-up
Alkaline Phosphatase IU/L 4.09 0.26 3.99 0.28 4.02 0.27
Blood Urea Nitrogen mg/dL 2.60 0.27 2.63 0.24 2.62 0.25
C-reactive Protein ug/mL 0.70 0.65 0.49 0.56 0.57 0.60
Creatinine mg/dL 0.60 0.08 0.62 0.08 0.61 0.08
Glycated Hemoglobin* pct 1.72 0.05 1.71 0.04 1.71 0.04
Uric Acid mg/dL 1.69 0.19 1.68 0.22 1.68 0.21

24-month Follow-up
Alkaline Phosphatase IU/L 4.12 0.24 3.98 0.27 4.03 0.27
Blood Urea Nitrogen mg/dL 2.59 0.23 2.62 0.24 2.61 0.24
C-reactive Protein ug/mL 0.65 0.60 0.48 0.48 0.55 0.53
Creatinine mg/dL 0.56 0.08 0.60 0.08 0.59 0.08
Glycated Hemoglobin* pct 1.71 0.04 1.70 0.04 1.71 0.04
Uric Acid mg/dL 1.69 0.21 1.68 0.22 1.68 0.21

*Estimated as (glucose mg/dL +46.7) /28.7



Supplemental	Table	3.	Regression	model	results	for	tests	of	caloric-restriction	treatment	
effects	on	change	over	time	in	Klemera-Doubal	Biological	Age.	Coefficients	for	age	are	
reported	for	a	10y	difference	in	age.	Coefficients	for	weight	are	reported	for	a	5kg	difference	in	

weight.		

	

	
	
	
Supplemental	Table	4.	Regression	model	results	for	tests	of	caloric-restriction	treatment	
effects	on	change	over	time	in	homeostatic	dysregulation.	Coefficients	for	age	are	reported	
for	a	10y	difference	in	age.	Coefficients	for	weight	are	reported	for	a	5kg	difference	in	weight.	
		

	
	
	 	

Base Model of Change 

(control arm only) Test of CR Treatment Effect Control for Weight

n=75 (216) n=220 (611) n=220 (611)

b [95% CI]

Follow-up                                      

(12-month increments) 0.71 [0.41 , 1.01] 0.72 [0.41 , 1.02] 0.72 [0.40 , 1.04]

Follow-up-by-Treatment 

Interaction                                    

(difference in effect of follow-up 

time in the caloric-restriction -0.60 [-0.99 , -0.21] -0.57 [-0.98 , -0.16]

Sex (male=1) 0.10 [-0.36 , 0.56] 0.09 [-0.20 , 0.37] 0.09 [-0.21 , 0.39]

Baseline Age (centered at 38y) 0.01 [-0.30 , 0.33] -0.01 [-0.19 , 0.17] -0.01 [-0.20 , 0.18]

Weight 0.06 [-0.03 , 0.14]

Treatment Group (CR=1) -0.04 [-0.19 , 0.10] -0.03 [-0.18 , 0.12]

Base Model of Change 

(control arm only) Test of CR Treatment Effect Control for Weight

n=73 (211) n=218 (601) n=218 (601)

b [95% CI]

Follow-up                                      

(12-month increments) 0.01 [-0.03 , 0.06] 0.01 [-0.03 , 0.06] 0.02 [-0.03 , 0.06]

Follow-up-by-Treatment 

Interaction                                    

(difference in effect of follow-up 

time in the caloric-restriction -0.07 [-0.12 , -0.01] -0.07 [-0.13 , -0.02]

Sex (male=1) -0.01 [-0.04 , 0.03] -0.03 [-0.06 , 0.00] -0.03 [-0.06 , 0.00]

Baseline Age (centered at 38y) -0.02 [-0.06 , 0.02] -0.01 [-0.04 , 0.01] -0.01 [-0.04 , 0.01]

Weight 0.00 [-0.01 , 0.01]

Treatment Group (CR=1) 0.00 [-0.02 , 0.01] 0.00 [-0.02 , 0.01]



Supplemental	Table	5.	Analysis	of	caloric-restriction	dose-of-treatment	effects	on	change	
over	time	in	Klemera-Doubal	Method	Biological	Age	and	homeostatic	dysregulation.	Panel	A	
shows	stratified	estimates	for	caloric	restriction-arm	participants	who	achieved	<10%	caloric	

restriction	on	average	across	the	12-	and	14-month	follow-ups	and	caloric	restriction-arm	

participants	who	achieved	10%	or	more	caloric	restriction.	Mixed-effects	growth	models	were	

estimated	by	including	dummy	variables	for	each	group	of	caloric	restriction-arm	participants	

and	computing	interactions	between	each	dummy	variable	and	follow-up	time	(gray	shaded	

coefficients).	Panel	B	shows	results	from	models	testing	the	dose-response	effect.	Mixed-

effects	growth	models	were	estimated	by	including	dummy	variables	for	randomization	

condition	and	for	membership	in	the	10%	or	greater	caloric-restriction	group	of	caloric	

restriction-arm	participants	and	computing	interactions	between	randomization	condition	and	

follow-up	time	and	randomization,	follow-up	time,	and	caloric	restriction	group	(gray	shaded	

coefficients).	Coefficients	for	age	are	reported	for	a	10y	difference	in	age.	Coefficients	for	

weight	are	reported	for	a	5kg	difference	in	weight.	

	
	
	 	

Change in                          
KDM Biological Age

Change in Homeostatic 
Dysregulation

n=203 (591) n=201 (583)

Panel A. Stratified Estimates
Follow-up                                      
(12-month increments) 0.72 [0.42 , 1.02] 0.01 [-0.03 , 0.06]
Follow-up-by-Treatment 

<10% CR -0.49 [-0.95 , -0.04] -0.08 [-0.14 , -0.01]
10%+ CR -0.72 [-1.19 , -0.25] -0.06 [-0.12 , 0.00]

Sex (male=1) 0.05 [-0.24 , 0.35] -0.03 [-0.07 , 0.00]
Baseline Age (centered at 38y) 0.03 [-0.16 , 0.21] -0.02 [-0.04 , 0.01]
Treatment Group (<10% CR) -0.05 [-0.23 , 0.13] -0.01 [-0.03 , 0.02]
Treatment Group (10%+ CR) -0.05 [-0.28 , 0.18] 0.00 [-0.03 , 0.03]

Panel B. Test of Dose-Response Effect
Follow-up                                      
(12-month increments) 0.72 [0.41 , 1.04] 0.02 [-0.03 , 0.06]
Follow-up-by-Treatment                 
Interaction -0.50 [-0.96 , -0.04] -0.08 [-0.15 , -0.02]
Follow-up-by-Treatment-by-
Treatment Dose Interaction -0.23 [-0.71 , 0.26] 0.02 [-0.04 , 0.08]

Sex (male=1) 0.08 [-0.22 , 0.39] -0.03 [-0.07 , 0.00]
Baseline Age (centered at 38y) 0.00 [-0.18 , 0.18] -0.01 [-0.04 , 0.01]
Treatment Group (CR=1) -0.03 [-0.18 , 0.13] 0.00 [-0.02 , 0.02]
Treatment Group w/ 10%+ CR -0.03 [-0.28 , 0.22] 0.00 [-0.03 , 0.04]



Supplemental	Table	6.	Analysis	of	caloric-restriction	treatment	effects	on	change	over	time	in	
Klemera-Doubal	Method	Biological	Age	and	homeostatic	dysregulation	based	on	the	subset	
of	8	biomarkers	matching	those	used	in	Levine’s	original	paper.	The	Klemera-Doubal	Method	

(KDM)	Biological	Age	and	homeostatic	dysregulation	algorithms	were	based	on	analysis	of	10	

biomarkers,	8	of	which	overlapped	with	the	original	set	published	by	Levine	(7).	We	repeated	

analysis	using	only	those	8	biomarkers	to	form	the	KDM	Biological	Age	and	homeostatic	

dysregulation	algorithms.	Results	were	similar	to	those	obtained	for	algorithms	defined	using	

the	full	set	of	10	biomarkers.	Coefficients	for	age	are	reported	for	a	10y	difference	in	age.	

Coefficients	for	weight	are	reported	for	a	5kg	difference	in	weight.	

	

Eight-Biomarker	Klemera-Doubal	Method	Biological	Age	
		

	
	
Eight-Biomarker	Homeostatic	Dysregulation	
	

	 	

Base Model of Change 
(control arm only) Test of CR Treatment Effect Control for Weight

n=75 (216) n=220 (611) n=220 (611)
b [95% CI]

Follow-up                                      
(12-month increments) 0.73 [0.47 , 0.99] 0.72 [0.47 , 0.98] 0.72 [0.46 , 0.99]
Follow-up-by-Treatment 
Interaction                                    
(difference in effect of follow-up 
time in the caloric-restriction -0.56 [-0.89 , -0.24] -0.54 [-0.88 , -0.20]

Sex (male=1) 0.10 [-0.23 , 0.44] 0.12 [-0.09 , 0.34] 0.13 [-0.09 , 0.36]
Baseline Age (centered at 38y) -0.05 [-0.30 , 0.20] -0.01 [-0.16 , 0.13] -0.01 [-0.17 , 0.14]
Weight 0.03 [-0.04 , 0.10]
Treatment Group (CR=1) -0.05 [-0.17 , 0.07] -0.05 [-0.17 , 0.08]

Base Model of Change 

(control arm only) Test of CR Treatment Effect Control for Weight 

n=74 (213) n=219 (606) n=219 (606)

b [95% CI]

Follow-up                                      

(12-month increments) 0.01 [-0.03 , 0.06] 0.02 [-0.03 , 0.06] 0.02 [-0.03 , 0.07]

Follow-up-by-Treatment 

Interaction                                    

(difference in effect of follow-up 

time in the caloric-restriction -0.07 [-0.13 , -0.02] -0.08 [-0.14 , -0.02]

Sex (male=1) 0.00 [-0.04 , 0.03] -0.03 [-0.06 , 0.01] -0.03 [-0.06 , 0.00]

Baseline Age (centered at 38y) -0.02 [-0.06 , 0.02] -0.01 [-0.04 , 0.01] -0.01 [-0.04 , 0.01]

Weight 0.00 [-0.01 , 0.01]

Treatment Group (CR=1) 0.00 [-0.02 , 0.01] 0.00 [-0.02 , 0.01]



Supplemental	Figure	1.	Caloric	restriction	achieved	by	participants	in	the	CALERIE	Trial.	The	
left-side	panel	shows	box	and	whisker	plots	of	the	distribution	of	caloric	restriction	(CR)	

achieved	at	each	follow-up	for	ad	libitum-	and	caloric-restriction-arm	(CR	arm)	participants.	CR	

at	baseline	was	0	by	definition.	The	right-side	panel	shows	the	distribution	of	average	CR	across	

12-	and	24-month	follow-ups	in	ad	libitum-	and	CR-arm	participants.	The	vertical	solid	red	line	

shows	0%	CR.	The	vertical	dashed	red	line	shows	10%	CR.			
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Supplemental	Figure	2.	Change	in	Klemera-Doubal	method	(KDM)	Biological	Age	for	
participants	in	the	ad	libitum-arm	and	for	caloric	restriction-arm	participants	who	achieved	
an	average	of	<10%	and	10%	or	more	caloric	restriction	across	12-	and	24-month	follow-ups.		
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Supplementary	Figure	3.	Klemera-Doubal	Method	Biological	Age	(left)	and	homeostatic	

dysregulation	(right)	plotted	against	chronological	age	for	participants	in	the	2009-10	NHANES.	

Plots	show	data	for	participants	aged	30-75	with	complete	biomarker	data.		
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